Air Purification

Microbial Limits for Clean Rooms in Canada

The use of clean rooms for sterilization and air purification is a global practice that has expanded with new technologies, increasing expectations for safety in traditional sectors like pharmaceuticals, and expanding applications in industries like nanotechnology. However, each sector and jurisdiction can have varying requirements. This is clearly demonstrated by ISO 14644 – Cleanrooms and associated controlled environments, which provides nine levels of classification for clean rooms (each with a magnitude difference in particle concentrations). What can be considered a “clean room” in one jurisdiction or sector may be considered vastly above or below a standard or regulation in another sector. So, it is important to understand what are the microbial limits for clean rooms in Canada or neighboring jurisdictions like the United States, and therefore what air purification you will need to meet the microbial limit.

Canadian Microbial Limits for Clean Rooms 

Canadian requirements for microbial limits and clean room conditions are determined by the Health Canada through the Food and Drug Act and the embedded regulations. Clean room requirements are described in Food and Drug Regulations (C.R.C., c. 870). Division 2 for Good Manufacturing Practices includes a definition of Sterile Products which requires manufacturing in separate and enclosed areas under the supervision of personnel trained in microbiology by a method scientifically proven to ensure sterility. Note this does not explicitly state the need for a clean room although a clean room is an obvious way to meet this definition.

It is not until a supporting document to the Canadian regulation that clean rooms are explained. The Good Manufacturing Practices Guide for Drug Products (GUI-0001) includes an annex specific to clean rooms and other sterile manufacturing requirements. Here, Health Canada defines four types of clean rooms (note this differs from the ISO standard which uses 9 definitions). However, Health Canada references the equivalent ISO standard and also requires the use of ISO methods for sampling and demonstrating clean room conditions. Health Canada also takes a nuanced approach by distinguishing clean room limits when the facility is “at rest” versus when operations are ongoing. The four levels of microbial limits for clean rooms in Canada are:

  • Grade A – Limits of 3,520 particles per cubic meter with a size of 0.5μm or greater.
  • Grade B – Has the same limits of 3,520 particles per cubic meter with a size of 0.5μm or greater as Grade A, but allows for a higher tabulated size (20 in Grade A vs 29 in Grade B). This is equivalent in concentration and size to the ISO-5 standard of ISO 14644.
  • Grade C – Limits of 352,000 particles per cubic meter with a size of 0.5μm or greater. This is equivalent to the ISO-7 standard.
  • Grade D – Limits of 3,520,000 particles per cubic meter with a size of 0.5μm or greater. This is equivalent to the ISO-8 standard. 

American Microbial Limits for Clean Rooms

Aeroex also supports American industries and suppliers subject to American regulations. Those familiar with the Canadian system of regulation will see similarities to the American counterpart. Per the Houston Chronicle’s small business guide, clean room requirements set by the Food and Drug Administration are provided through the Current Good Manufacturing Practices series of regulations. Specifically, Code of Regulation 210 and 211 provide requirements for the production of sterile products, notably for:

  • Equipment for control over air pressure, micro-organisms, dust, and humidity.
  • Air filtration systems, including prefilters and particulate matter air filters.

This set of regulations provides the “overhead” requirements. Additional requirements are typically attached to individual product approvals. 

Beyond these regulatory requirements, Aeroex understands that clean rooms can have varying requirements and challenges for different types of industry applications. Read more here to learn how we are considering and tackling these applications. 

How to meet the Canadian Microbial Limits for Clean Rooms

The Air-Fit by Aeroex is a ceiling-mounted fan filtration unit that delivers air circulation with a centrifugal fan and filtration using HEPA filters to meet all clean room standards. The use of HEPA filters guarantees an efficiency rating of 99.99% for particles as small as 0.3 μm, delivering high volumes of HEPA filtered air to your clean room! The Air-Fit should be incorporated into a clean room design for a given standard of air purification, depending on the desired or regulated microbial limits. It is notable from the above discussion that Canada uses a 0.5um particle size threshold, whereas some industries in the United States only go to a 1.0um particle size. The Air-Fit is equipped to exceed Canadian standards by filtering particles as small as 0.3 μm (there is evidence HEPA is effective for smaller particles than this too but this is not guaranteed). 

Given the efficiency and particle size threshold of the Air-Fit, Canadian standards for clean rooms can be achieved. The deployment method of the Air-Fit will depend on the size of the facility and required air handling. Aeroex offers different sizes of units ranging from 500 to 1000 cubic feet per minute of capacity and can incorporate multiple units in a series to fully augment your existing mechanical ventilation system. A central control panel is provided in these instances to allow you to monitor and configure multiple units simultaneously.

Ready to Help You Meet Microbial Limits for Clean Rooms in Canada

All our Aeroex units are designed and manufactured in Canada. We support a wide range of Canadian industries and value our local partners. Aeroex is committed to meeting your regulated requirements in a way that provides you the maximum value. If you are seeking a partner in clean room air purification, contact Aeroex today to help us understand your unique needs.

Mist Collectors

Mist Collection – Coolant vs. Oil Applications

Comparing Oil and Coolant Applications in Machining for Mist Collection

Cutting and shaping metal through machining is an intense process that generates significant amounts of heat, creating implications for shops to perform these operations at scale. This is a well understood constraint on modern machining and there are strategies in place to deal with this. Given the amount of heat generated during the machining process, it’s very common to use oil lubricants or water-soluble coolants in your machining process to either reduce the heat generated or mitigate the impact of heat generated. 

What Are The Benefits of Lubricants Versus Coolants?

For each operation, a shop will choose which fluids make the most sense given the type of machining, material type, past experience, etc. Each choice of coolant or lubricant will have different outcomes for your process, and for the safety and quality risks posed by mists in your shop when these fluids are used. Aeroex understands the range of fluids machining shops use and considers the properties of each when recommending a mist collector or industrial air purification solution. Here are a few things to consider:

Considerations for Oil Lubricants

Oils are relatively viscous fluids, meaning that the friction between their particles is greater than the surfaces they interact with. This is what makes oils “slippery”, making them an excellent lubricant for machining. By reducing friction between surfaces and workpieces, less heat is generated during machining. Note that if any heat is generated in spite of a lubricant, the oil will not reduce the heat. Lubricant can be applied during machining or with a coating layer on the tool itself. 

Oil lubricants come in a range of viscosities ranging from low viscosity to high viscosity. The goal of each is the same – to reduce friction and heat generation during machining. A fluid that is too thick can make your machines work harder, leading to wear and tear because of undue effort. However, if the oil is too thin, it may not be sufficient enough to prevent friction and create lubrication. In any machine operation, a balancing act is needed to select the right lubricant for the job.

Perhaps most importantly, oil is a combustible and volatile fluid. If for some reason too much heat is generated and the flashpoint is reached, lubricants can ignite. So, any machining operation and oil collection solution needs to account for these fire prevention and safety considerations. Oil lubricants can also lead to smoke along with volatilized mist, meaning that your air purification system will need to be able to capture these particles.

Considerations for Coolants

Coolants are the second major category of fluids to use in machining that will help you manage potential heat generation and can keep your machines operating. There are a number of differences when compared to lubricants that add considerations for selecting machining fluids.

Coolants differ from oil lubricants in that they take heat away only after it is generated, rather than preventing it in the first place like oils would. While heat generation occurs, the coolants continually keep the cutting zone at a lower temperature. The main benefit of a coolant is that it does not risk ignition, which allows more opportunities to scale up your machining operations without risk of fire hazards or added resources for monitoring.  

Some coolants are compromised of oil diluted with water, which can lead to corrosion depending on the material of your machine or the product. The diluted nature of these coolants means they have less lubricity than their synthetic counterparts, limiting their use to lighter applications. Water-based coolants also have odor problems caused by bacteria depending on how they are used and stored. There are also synthetic lubricants, which are popular for precision machining but risk generating smoke (another air quality concern). 

Managing your Lubricants and Coolants With A Mist Collector

Your choice of lubricant versus coolant is likely to depend on your shop, the materials you are using, what operations you are running (e.g. drilling, milling, tapping, etc.), and how much heat is being generated. With each choice, it’s important to be aware of the dynamics of the fluids you are working with and how best to manage risks to your shop. Aeroex has been in the business of mist collection for more than twenty years and has studied the market to provide you with customized solutions that meet your performance expectations. 

Aeroex Mist Collectors: Mist-Fit and ARO Series

The Mist-Fit is Aeroex’s most popular option for lubricants and coolants for a reason. Its compact and modular design means it’s ready for deployment in any shop, and it’s easily configurable – for example, if you are using lubricants or coolants at different phases of your operation. A three-stage progressive filtration system uses mechanical elements to catch most of the product before finishing with a depth-loading fiber bed filter with MERV 15 rating to capture the hard-to-get oil mists that can cause problems in your shop. Our Canadian engineers have included a number of design features that promote drainage, limit filter changes, and prevent clogging. Mist-Fit is a great value choice for day-to-day machining with coolants and light oil lubricants. If you are using synthetic oils, we may recommend an optional four-stage HEPA filter to capture the sub-micron smoke and vapor particles. There is also an optional odor control for issues mentioned earlier. 

The ARO Series incorporates all of the design and quality of life features known and loved in the Mist-Fit. The ARO Series has added capacity for heavy machinery using thick oils that need near-constant runtimes without disruptions for filter changes, maintenance, or clogging. The ARO is the premium choice for the virtual elimination of smoke and mist at scale, delivering up to 4000 cfm and potentially accommodating multiple machines simultaneously.

Solutions for Oil and Coolant Applications

At Aeroex, we will not push “one-size fits all” solutions on you. We value the time and patience of learning your specific challenges and getting consensus on a solution that is best for your situation. Oils and coolants present different challenges for machine operations and shop management, and we will work to fit right in with the corresponding oil mist collector that is right for you. To help us understand your needs, contact Aeroex today.

Air Purification

Environmental Monitoring of Clean Rooms

The performance standards of clean rooms and clean room air purification systems are often an area of significant focus for those in the environmental health and safety industries. This is often in reference to decisions about the design of facilities, or standards and regulations when making decisions about what industries to service and what infrastructure this requires. However, when was the last time you thought about how your existing systems are performing? In industries where clean rooms are used, deploying a system for your intended level of service is not sufficient assurance unless you have also tested its configuration to meet your standard and conduct ongoing monitoring to confirm ongoing compliance. Without monitoring, it is impossible to know whether the system you are using is meeting the promised standard and if you are in continued compliance with a regulatory requirement or supplier agreement. Therefore, the environmental monitoring of clean rooms is an important consideration for Aeroex and those in the quality or health and safety industries. 

Requirements for Environmental Monitoring

Some regulatory environments require ongoing environmental monitoring, meaning that irrespective of the benefits (see below) you will need to do it. You should be aware of your ongoing monitoring requirements at the outset when establishing a clean room. 

In Canada, Annex 1 to the Good Manufacturing Practices Guide (GUI-0119) outlines how to do monitoring depending on the class of clean room you operate, with higher levels requiring constant monitoring and lower levels requiring more periodic monitoring. There is some flexibility in sample size when compared to the definitions in ISO 14644. In the United States, an independent standard was maintained until 2001 when the General Services Administration adopted ISO 14644 for internal use as the standard for environmental monitoring of clean rooms.

Benefits of Environmental Monitoring of Clean Rooms

Environmental monitoring of your clean room may seem like an added expense or undue workload when it is first considered. However, this proactive measure brings many benefits to the organization and the client. It can even help save you money or find opportunities. Some of the benefits include:

  • Performance Guarantees. If you have a good supplier of air purification systems like Aeroex, your purchase agreement will likely include expectations about the minimum standard of performance under ideal operating conditions. 
  • Items Under Warranty You may also have purchased a limited or extended warranty. If you do not check the performance of your air purification system through clean room environmental monitoring, you may miss a malfunctioning part that could be easily replaced under your warranty. Take advantage of the warranty with monitoring for signs of any issues. 
  • Save Money on Filters Changes and Purification System Maintenance Even with Aeroex air purification systems that use large volumes of filter media to prolong filter changes and avoid clogging, all systems eventually require filter changes. Typically, manufacturers will provide approximate timelines between changes but how do you know when exactly to do so? Some environments with heavy contaminants require frequent changes to keep performance up to par while others may last longer than expected due to other beneficial sterilization measures taking place. If you do environmental monitoring, you can use the changes in conditions to correspond with a change in filter with clear justification. So long as you meet performance standards, you may be able to save money by waiting on a filter change. 
    • Clean Room Design Features. Air purification systems are one aspect of clean room design, and performance is impacted by other features like airlocks, doors and furnishings, appliances, garments, etc. If environmental monitoring shows a slide in performance and your air purification system is fully functional you may need to take a look at the other clean room inputs. Continued monitoring during retrofits can help to quantify the benefits of changes you make to your clean room operation or detect when a new process positively or adversely impacts your environment. 
  • Compliance. Environmental monitoring logs can help to easily demonstrate compliance with a regulatory requirement or supplier agreement, or even to prepare you for an ISO 14644 certification.
  • Data. When you perform environmental monitoring, the data you get provides an immediate snapshot into the state of your clean room and air purification systems. However, the value of this data grows over time as it turns from a snapshot to a historical trend report. As you get more data, you will be able to see trends in how your clean room performs which can lead to inquiries that result in failure finding, root cause analysis, optimizations and savings, etc. 

How to Conduct Environmental Monitoring

The aforementioned GUI-0119 provides practical advice on how to conduct environmental monitoring. Devices like portable particle counters can be used, provided that the tubing is not too long (which can cause condensation in the tubing while traveling to the sampler). The unidirectional airflow requirement of high-level clean rooms can pose additional sampling challenges, resulting in the need for isokinetic sample heads. A monitoring system could use multiple airborne sampling points, which could feed one or more particle counters. Typically, the system used depends on the expected particle sizes you will encounter and are trying to regulate. Some materials have greater risks, such as radiopharmaceuticals. 

Once you have selected the equipment you wish to use, you will want to create a sampling plan including identifying the particle types you need to detect, designating your sample points, and establishing a baseline of background conditions. Once operational, continue monitoring while recording your sanitation practices as well as any issues you detect.

Your Clean Room Experts

At Aeroex we are advocates for environmental monitoring of clean rooms. We design our systems for a long life of high performance and know models like the Air-Fit will hold up to continued monitoring. We are partners committed to your success and appreciate any dialogue or observations that come out of your monitoring efforts. When selecting your clean room air purification system, we will keep environmental monitoring considerations front of mind and make recommendations about how best to achieve your targets. If you are seeking a partner committed to the long-term success of your clean rooms, contact Aeroex today.

Air Purification

Clean Room Classification Chart

Clean rooms are widely understood as engineered spaces within facilities that have stringent levels of sterilization and air purification. But what actually defines a clean room? Clean rooms are a general term for what are actually a series of room types with meaningful differences in the level of service provided, and what constitutes a “clean room” will vary significantly by industry or application. What is considered clean room for a less stringent industry may be wholly inadequate for precision applications like nanotechnology. Definitions of clean rooms can also raise issues when supplier agreements or legislative requirements expect a certain level of cleanliness, or when trying to validate the claims or guarantees of a technology or a clean room service. It is for this reason that clean room classifications and classification charts are an important industry source of standardization.

Industry Standard Clean Room Classification

Aeroex is fully aligned with the international best practices for clean room classification. ISO 14644 provides a series of standards for clean room classification and cleanliness. There are fourteen documents within the series that cover topics including design, microbial air concentrations, testing methods, particle sizes concentrations, and air cleanliness. Notably, ISO 14644-1 provides clean room classifications by air cleanliness. Aeroex uses ISO 14644-1 when designing clean room air purification systems like the Air-Fit or when working with clients on a deployment plan for their target level of clean room classification. See below for Aeroex’s industry-standard clean room classification chart:

How to Read and Use the Clean Room Classification

The clean room classification chart provides 9 classes of clean rooms. These are itemized down the side as ISO-1 to ISO-9, the definitions provided by ISO 14644. Here, ISO-9 is the “dirtiest” and ISO-1 is the “cleanest”. 

Across the top are a series of particle size concentrations, measured in microns (depicted as μm). A micron is a particle 1×10−6 meters in length. Particle sizes considered by ISO 14644 range from 0.1 to 5.0 μm, meaning these particles are very small. This is why Aeroex air purification systems like the Air Fit use HEPA filters capable of removing 99.99% of particles as small as 0.3 μm. These particle size concentrations list the maximum allowable number of particles of the given size category within a cubic meter of air in a clean room.

To read the table, start with your required ISO classification target, and read across. In each column with a value, the number listed in the cell corresponds to the total number of particles of that micron/sub-micron size within a cubic meter of the room. Note that each clean room classification allows a few similar particle size categories, which is reflective of most size distributions for contaminants. These values should be used as the basis for your targets in designing your clean room, selecting your air purification technology, or monitoring your air quality for ISO compliance.

There are a number of ways to use the clean room classification chart depending on your progress with implementing your clean room. You may be in the very early stages of designing your clean room and may wish to study the different levels from ISO-1 to ISO-9 used in industries you could support as clients. Or, a regulatory requirement in your industry may be informing your target. Even after your clean room is designed, operators continue to reference the chart when monitoring their performance.

Transitioning from FED STD 209E

FED STD 209E is the American precursor to ISO 14644. Titled Airborne Particulate Cleanliness Classes in Cleanrooms and Cleanzones, 209E was superseded by the new international standard. Some legacy applications still work with 209E, and Aeroex is comfortable working with both classification charts interchangeably as needed. The corresponding 209E equivalent is provided in our chart for reference.

Why are Clean Room Classifications Important?

Understanding the various contaminant limits for different levels of clean rooms or different jurisdictions are important to help manage your business and maintain your facility. By knowing how to navigate the various standards, you can keep your business resilient and positioned to get new opportunities. Consider the following reasons:

  • It’s the Law. In regulated jurisdictions like pharmaceutical manufacturing, government agencies set specific standards for sterilization and air purification that need to be followed. Knowing what designation from the chart is expected will inform the clean room air purification system you require along with other design features. 
  • ISO Certification and Business Reputation. When you establish a clean room for a given cleanliness standard, you can request an evaluation to receive ISO certification. By obtaining the ISO certification, your business will rise in reputation for having an internationally trusted endorsement of the level of service you provide. 
  • Adaptable to Changes in Standards. With increasing evidence of the benefits of workplace safety, sterilized conditions, etc., what is considered the “minimum” requirement for microbial limits may not be the same tomorrow or in the future. Working to exceed the limits or knowing the thresholds can “future proof” your business by preparing you in advance for any regulatory or supplier changes.
  • Secure Your Clients.  Many jurisdictions are not legally regulated to establish clean room conditions but their business cannot function without one! This is notable in industries like nanotechnology and optical manufacturing. Establishing and monitoring a clean room with a concentration limit from the chart will help to secure your clients or achieve the conditions of any supplier agreements. 
  • Support Emerging Technologies and Industry. There are emerging business cases for new applications of clean rooms, such as during the production of solar panel components where impurities can lead to inefficient energy conversion. Monitoring the industries and being prepared to meet their required microbial limits can help you win new business. 

Find More Clean Room Resources

Aeroex is committed to the advancement of the clean room industry and providing our clients with the best advice. Our products are designed by engineers and manufactured in Canada. Visit our website to find other resources similar to the classification chart and contact Aeroex today to get expert advice firsthand. 

Air Purification

Clean Rooms in Pharmaceutical Production

Pharmaceutical production is a critical industry for supporting the healthcare and well-being of the world’s population – is it also a tightly regulated industry with precise methods developed through decades of scientific study. Stringent conditions that must be the same in all circumstances are placed on pharmaceutical production to guarantee that the outputs will be virtually identical in all cases. When administering a sensitive or concentrated pharmaceutical product, even very slight impurities or contaminants could lead to widely varied and undesirable outcomes meaning healthcare practitioners need absolute confidence in what they are prescribing. It is for this reason that clean rooms place a vital role in pharmaceutical production, and in turn medical-grade air purification systems that create clean room conditions like the Air Fit from Aeroex.

How Does Air Purification Help Pharmaceutical Production?

Clean rooms with air purification address many of the quality and safety priorities of the pharmaceutical industry. Common conceptions of how we transmit contaminants could include things like breathing germs, not washing your hands, not having a clean workstation, etc. However, there are actually many airborne contaminants like dust, pollen, aerosols, and bacteria in ambient atmospheric conditions that would interfere with pharmaceutical production if they were not removed. Many of these contaminants are not detectable to the naked eye, meaning incredibly fine filtration or other methods of purification are needed to remove them. This helps the pharmaceutical industry by providing a guarantee that impurities will not enter a product at any stage in the pharmaceutical production process. 

Clean rooms can also support other industries as recognized by the recent updates in clean room ISO standards, which cited food production, aerospace, and automotive manufacturing as other applications.

What is a Clean Room for Pharmaceutical Production?

Clean rooms are used in a variety of industries but are most common in pharmaceutical production on account of the previously mentioned quality requirements. According to ISO 14544:2015, clean rooms are specified by “the classification of air cleanliness in terms of concentration of airborne particles”… “based on threshold (lower limit) particle sizes ranging from 0.1 µm to 5 µm”. Clean rooms can provide varying levels of stringency and cleanliness – these standards rang from ISO-1 (the “cleanest”) to ISO-9 (the “dirtiest”). 

The most common clean room standards used for pharmaceutical production are ISO-8 and ISO-7. Typically these facilities require a sterile environment but don’t handle hazardous materials. The required air circulation would be around 30 cycles per hour, with approximately 83,000 particles less than one micron in size being allowed per cubic meter of air (this may sound like a lot but not when these particles are incredibly small!). 

Higher standards like ISO-5 are typically reserved for specialized technologies like nanotechnologies where even the smallest impurities can have an outsized impact on very small products. These clean rooms typically require unidirectional flow as well, which not all pharmaceutical clean rooms require provided the right purification takes place. To learn more about clean rooms and the breakdown of air purification requirements and methods, check out our recent article on the subject.

Air Purification for Clean Rooms in Pharmaceutical Production

Aeroex specializes in all types of air purification for industries ranging from swiss lathe machining to public schools or hospitals to specialized manufacturing and pharmaceutical production. Our offering for pharmaceutical production clean rooms is the Air-Fit, a clean room system using ceiling-mounted fan filters equipped with the highest standards in air purification technology. The high-efficiency particulate air filter (HEPA) has an efficiency rating of 99.99% for particles as small as 0.3 μm. This rating is notably smaller than the 0.5μm and 1.0μm requirements of ISO-7 clean rooms cited for industries like pharmaceutical production, making the Air-Fit the ideal model for such clean rooms. 

Calculate the Air Circulation of a Clean Room for Pharmaceutical Production

Clean rooms are defined not just by the level of cleanliness an air purification system can provide, but at what scale and capacity so as to constantly maintain the cleanliness of facility of a given size/volume. Therefore, the air handling of the air purification system needs to be considered. The Air-Fit comes in two models providing either 500 or 1000 cubic feet per minute of air handling, with speed variations within each. To determine your capacity required to circulate purified air at the necessary frequency (for example 30 times per hour), the volume of the clean room needs to be taken into account. The Air-Fit delivers the high air handling using a centrifugal fan and high volumes of filter media. 

In cases where a staged approach to fan filtration was needed, the modular nature of the Air-Fit units and integration with existing mechanical systems could provide the necessary air handling. Typically units should be spaced to provide ambient conditions unless unidirectional flow creates added requirements. If multiple units are deployed, the Air Fit would provide additional benefits (as discussed below) by using a control panel to configure all units simultaneously. 

Ways to Improve your Clean Room

Beyond meeting or exceeding the specifications of clean rooms, the Air Fit provides many other benefits to the operation that can improve your clean room. First, our models provide similar air handling to competitor units but do so more efficiently, using a compact model with a smaller footprint to do so when clean room ceiling “real estate” can be in short supply due to lighting, appliances, containment devices, etc. also appearing on the ceiling. Our control panel for configuring multiple Air-Fit units is easy to use, saving an airflow engineering from having to locate and calibrate each unit individually (they’ll thank you for it with a lower invoice!). Our models are designed and manufactured in Canada, giving a long-lasting unit that adds efficiency with long useful life. Our filters use high filter media and rarely clog, leaving you operating longer without a filter replacement. And when you do need to replace the filter you can easily do it yourself thanks to the improved safety we’ve added to the access hatch after seeing issues in competitor models with this process. These benefits combine to improve your clean room and give you greater value. 

If you need to establish a clean room or wish to improve or expand an existing facility, contact Aeroex today.

Air Purification

Commercial Clean Rooms

Clean rooms are commonly associated with industries like pharmaceuticals and healthcare, but advances in manufacturing have led to clean rooms being used in many other commercial applications. A clean room is a sanitized space that is maintained using air purification along with other measures like gowning, frequent cleaning, and airlocks to create a neutral environment devoid of contaminants that can pose quality issues. Clean rooms are specially designed so that users are able to monitor and maintain the environment of the room by controlling factors such as humidity, temperature, airflow, pressure, and filtration. Aeroex is an experienced supplier of clean room fan filter units like our Air-Fit for the commercial sector – click here to learn more.

Why Do Commercial Industries Need Clean Rooms?

Clean rooms are a necessary part of many commercial applications that require heightened quality or safety standards or use complex processes that could be impinged by airborne contaminants. The primary purpose of a clean room across these industrial applications is to provide a clean working space in which manufacturing processes can take place without interference from contaminants that can jeopardize the final product.

Contaminants include (and are not limited to) dust, vapor, microbes, fibers, as well as other potential biological contaminants. When these particles interfere with a process, products may be wasted or the time and money of the operation could be lost.

Air Purification for Commercial Clean Rooms

An essential piece of equipment employed in clean rooms are air filters, as they are responsible for the control of contaminants within the clean room. Air filters are engineered to trap contaminants as well as to circulate fresh, clean air into the clean room at specified intervals. The type of air filter used will largely depend on the specifications of the clean room in question, as well as the standards set by the ISO 14644. The Air-Fit 500 uses a HEPA filter with 99.97% removal efficiency for 0.3um particles, which is better than many clean room requirements.

From manufacturing to medical and pharmaceutical applications, clean rooms are employed to meet the regulatory standards set by set employment or environmental standards. ISO 14644 typifies clean rooms into 9 separate categories – all of which are defined by the nature and the purpose of the processes used to manufacture the end-product needed. ISO-1 cleanrooms have the strictest standards for cleanliness, and have the least number of particulate in the air. ISO-9 cleanrooms, in comparison, have the lowest standards of the 9 cleanroom classifications. 

Common Commercial Clean Room Applications

In today’s blog we’ll look at a few industries that rely on the use of clean rooms for their manufacturing processes.

Pharmaceutical Production

As mentioned at the introduction, pharmaceutical production facilities are some of the most common applications for clean rooms due to stringent health and safety requirements. These industries are tightly regulated. Clean rooms are also required during medical trials and other scientific investigations where the interference of airborne contaminants needs to be eliminated as a potential unknown variable in the results of any studies.

Medical Device Manufacturing

Whether producing single-use medical devices like syringes and catheters, or implantable devices like pacemakers, any product that’s interacting with bodily systems needs to be full sterile and devoid of any contaminants. History shows the damage and lawsuits that improperly manufactured medical devices can lead to. Therefore, given the intimacy of certain medical devices they are often manufactured in clean room conditions with air purification. 


The aerospace industry requires precision and specification – when thousands of feet up in the air, even the slightest quality issue could lead to an unforeseen challenge. The aerospace industry often enlists other technologies like optical devices and instrumentation that have similar clean room requirements to other aerospace components. Aeroex is a trusted partner for “mission-critical” industries like the aerospace sector. For example, we are trusted by manufacturers supplying nuclear industry clients like CANDU nuclear power utilities.


Optical device manufacturers require clean rooms to ensure no impurities interfere with the crafting of lens and other fine components. These components must be absolutely dust free, and some specialized devices also require specific levels of temperature and humidity. For an illustrative example, check out this interesting showcase of Fujifilm’s use of clean room. Aeroex also has a strong understanding of supporting optical requirements from supplying clients like Benmur Precision with oil mist collectors used in machining parts for Nikon


There is growing awareness of the need to establish clean rooms for the production of solar panels. Typically, solar panel materials have been able to tolerate some impurities that would otherwise be rejected in higher-grade electronics and improvements to the supply chain have mitigated some of the historical quality issues. However with the need to scale up solar and a push for more efficiency, low-level clean rooms are now being used by industry leaders. A recent industry survey found that combustible dust, or gasses from processing, could be creating impurities mitigated by clean rooms.

Food and Beverage Packaging

Clean rooms in the food manufacturing industries often focus on preventing microorganisms from entering the product. This can significantly extend the shelf life of a product by ensuring no contaminants are present that would speed up the deterioration of the product. Clean rooms with air filtration are often paired with other measures to preserve food like chilling. 

The Use of Commercial Clean Rooms is Expanding

With advances in technology, the use cases for clean rooms are continuing to expand. Aeroex is known for being at the forefront of industry developments and we take pride in innovation. Whether you are developing clean rooms for an established industry or you want an air purification partner who can help in developing a new application, Aeroex is your trusted partner for commercial clean room air purification. Contact Aeroex today so we can get learn about your industry. 

Air Purification Blog

What Is A Fan Filter Unit?

Fan filter units are a dual-purpose technology that simultaneously purifies the air in a room with state-of-the-art filtration and increases the airflow through the space in which it’s installed using a motorized fan. Fan filters bring many benefits for workplace health and safety, bring stringent quality to operations with a building, and offer significant value when compared to other technologies that deliver similar functions. Fan filters are commonly used in workplaces and facilities that require purified air and frequent cycling of rooms, such as clean rooms, specialty manufacturing, food, pharmaceuticals, and science labs.

What Does A Fan Filter Do?

Fan filter units purify and circulate air to improve workplace conditions, even creating clean rooms. First, one or more fan filter units are ceiling mounted and integrated with your existing mechanical and electrical systems (models like Aeroex’s Air Fit are lightweight and have a small footprint that makes this part easy). Once installed, the fan filter unit operates a motorized fan that circulates air through the filtration system to purify it by removing 99.99% of all contaminants.

To create clean room conditions, the smallest of airborne contaminants must be removed (smaller than one micron) from the air and circulated with positive pressure. Airborne contaminants could include dust, spores, smoke, vapors, viruses, bacteria, etc. To purify the air, the Aeroex Air Fit fan filter unit first screens out larger particles with a primary filter so they don’t get caught in the more intricate secondary filter. Next, the Air Fit uses a powerful high efficiency particulate air filter (HEPA) to remove up to 99.99% of particles less than one micron in size. HEPA filters are the highest known standard for air filtration technology and work by forcing air through a randomly aligned mesh of incredibly fine synthetic fibers to catch any particles trying to travel through. By the time air leaves the filter, it is fully purified and ready to be circulated into your cleanroom or facility. As air is purified and released, the motorized fan is blowing air to create a higher flow.

Supply Purified Air

Aeroex fan filters offer significant benefits for those wishing to establish clean rooms and airflow regimes that meet ISO 14644 certification, or those who simply wish to get the full benefits of air purification and flow. Fan filter air purification can virtually remove common environmental risks such as the heightened prevalence of microbiological contagions. In other scenarios, clean rooms require the elimination of dust and other particulates that can interfere with intricate production processes (e.g. nanotechnology) or would introduce impurities in strictly regulated substances (e.g. pharmaceuticals). 

How to Choose A Fan Filter

Cleanroom technologies like Aeroex’s AIR FIT and ISO 14644 certification are generally understood as having many of the benefits listed above. Nevertheless, choosing a fan filter unit requires careful consideration. Air purification and removal of the smallest particles are foundational to ISO 14644 standards, making a purification system the logical starting point – in this area, Aeroex’s designed and made-in-Canada technology delivers by producing high-quality filters with a large volume of filter media.

After setting performance and specifications, you may not have considered the ongoing operations, configuration, and maintenance costs. Here, Aeroex has made specific research, design choices, and investments that will deliver value for your fan filter across its entire lifecycle. Consider the filter replacements – many competitor products create unexpected expenses due to frequent filter maintenance (e.g. clogging) and replacements. Aeroex lowers your costs in the medium-long term by using high volumes of filter media to extend the life of the filter until replacements. The volume and primary mechanical filter are also meant to prevent clogging. Our clients report filters performing past their 1 to 3 year expected service life. Competitor products may require a filter change as soon as every six months. The Air Fit also delivers stronger airflow despite being smaller than competitor products, thanks to Canadian engineering.  

Clean Room Installation

Most importantly, Aeroex has also designed the Air Fit to avoid costs specific to cleanroom configuration and airflow engineering. To provide a clean room, balancing, and certification from an airflow technician is required after design and deployment. Larger cleanrooms often have multiple fan filters, requiring each one to be individually inspected and balanced. This can become highly costly once technicians have to work at heights and provide individual attention (and billable hours!) to each fan filter. Luckily, the Aeroex Fan Fit comes with a central control panel that can configure and operate multiple units remotely – significantly streamlining the balancing process!

Supply Purified Air

Fan filter units are the best way to supply your clean rooms and facilities with purified air at sufficient flows, and Aeroex’s Air Fit is uniquely designed to provide the most value for air purification. Contact Aeroex today to learn how to get started.


Air Purification

Fan Filter Unit for Clean Room

Clean rooms are special facilities with engineering controls to prevent contamination from vectors like airborne pollutants. Clean rooms are important because they ensure the safety and integrity of critical applications and industries like manufacturing quality control, or the production of pharmaceuticals and medical supplies.  Special industries using cleanrooms include specialized optical devices (ex. cameras and telescopes), production of personal protective equipment, food production, fuel cells, military applications, and academic research or experiments (per Terra Universal). In any cleanroom, purified air is one of the most important parts of meeting the required standards. Recognizing this need, Aeroex provides ceiling mounted fan filter units with the airflow capacity, medical-grade filtration, and flexible configuration options to create a cleanroom air purification system.

Which Type of Filter Should Be Used to Filter The Air Entering a Clean Room?

Clean rooms are measured and defined by the levels of airborne particles within the controlled environment. Clean rooms have many other considerations like the usage, entry points, design, etc., but these factors all contribute or relate back to the permissible level of contamination. This is recognized by the ISO 14644 series of standards for Cleanrooms and Associated Controlled Environments (some cleanroom users like American industries also reference Federal Standard 209).

Per the International Standards Organization, clean rooms fall into one of nine categories of cleanliness based on the maximum allowable density of sub-micron sized particle contaminants in the cleanroom air. A logarithmic scale is used to delineate cleanliness levels. Different industries may require varying levels of cleanliness – for example, a general pharmaceutical manufacturing cleanroom may require an ISO-8 standard (15–25 air changes per hour and a maximum allowable concentration of 3,520,000 0.5 um particles / cubic meter), whereas a pharmaceutical clinical trial may require an ISO-7 standard (30–60 air changes per hour and a maximum allowable concentration of 352,000 0.5 um particles / cubic meter) (Source: Mecart Clean Rooms). Fan filtration with adequate capacity and performance is critical to meeting these requirements. The highest standards may require additional measures, such as unidirectional flow or an airlock system.

Aeroex understands the unique parameters that define clean rooms that go beyond general standards for air quality referenced by OSHA, the EPA, and other industry bodies. Aeroex’s understanding of cleanrooms is also supported by other standards-related but not captured by ISO 14644, such as standards for the measurement or distribution of airborne particle sizes. Aeroex has designed a fan filter for clean rooms with this technical understanding as the foundation.

How To Make a Clean Room With Air Purification

Clean rooms are not possible without several design factors. The cleanroom also needs to enable the end-user, such as manufacturing. The method of establishing a clean room will depend on the size and configuration of the facility but generally includes a few key items – notably air purification systems. A cleanroom is achieved with the following inputs (Source: Trax Industrial):

  • Air purification systems: a cleanroom must be void of dust, aerosols, vapors, smoke, microbes, and other contaminants suspended in the air that could interfere with quality or processes. To achieve ISO standards, air filtration must target particles smaller than one micron, like Aeroex’s fan filter devices.
  • Positive air pressure: to promote the flow of air and the proactive extraction of contaminants, positive pressure needs to be enforced. This quality measure ensures that if the cleanroom were compromised, the higher pressure air of the cleanroom would push air towards the breach rather than drawing unpurified air into the cleanroom. This means any air purification system needs sufficient air handling.
  • Exfiltration: To sustain a positive air process, the room must be properly sealed. As much as possible, escape from windows, doors, electrical conduits, and other pathways must be eliminated.
  • Environmental factors: Humidity, temperature, conductivity, and laminar (smooth) airflow are all required considerations for a proper cleanroom.

Aeroex understands the pivotal role that air purification systems serve in making a clean room, and has designed its fan filter units to provide the necessary performance and filtration specifications to eliminate contaminants while maintaining positive air pressure.

Fan Filter Unit for Clean Room

The Air Fit is a fan filter unit for clean rooms and other facilities providing air purification. Air Fit integrates with your existing mechanical systems to deliver more airflow and clean room air purification simultaneously. The Air Fit is light and compact, fitting onto the ceiling with the existing ventilation. Once installed, it purifies the air with a two-stage filtration system.

Why are HEPA Filters Used in a Cleanroom?

Aeroex HEPA filters meet the highest standards for efficiency and purification. The primary filter removes large particles to minimize impacts to the second stage high-efficiency particulate air filter (HEPA). The secondary HEPA filter provides 99.99% efficiency for particles as low as 0.3 microns – this standard meets or exceeds many of the cleanroom classifications set by ISO 14644. Aeroex provides high-quality filters within this system that lower your operating costs, using large volumes of filter media to extend the service life until an eventual replacement – the primary filter is also designed to reduce wear on the secondary filter.

Ceiling Filters for Clean Room Requirements

Filtration efficiency is only one determinant of a proper cleanroom – systems also need to deliver adequate capacity for positive air pressure and many exchanges per hour. The capacity needed will depend on the size and configuration of the room. To meet different needs, Aeroex provides the Air Fit 500 as an entry point to deliver 500-600 cubic feet per minute of airflow, with the larger Air Fit 1000 Clean Room System delivering up to 1100 cubic feet per minute.  

Aeroex understands the specific needs of fan filter units for clean rooms. A larger air exchange volume may be needed to meet higher levels of cleanroom certification. In these situations, there are two general approaches – a larger unit and/or several smaller and supplementary units could be deployed. To ensure you meet ISO certification, Aeroex provides a central control unit with the Air Fit 1000 for operation by an air balancing engineer who will measure and configure airflow. Controlling all units from a single panel creates a safer and more efficient balancing process, rather than working at heights to modify and balance several units individually. This is one example of how Aeroex is committed to the full lifecycle of your cleanroom operation and continued ISO certification.

Trusted Partners in Critical Industries

Building a clean room with air purification is an important investment to service critical customers and industries. Aeroex understands this commitment, and partners with its clients to become fully invested in the protection and quality of cleanroom environments.  Aeroex routinely delivers solutions that are depended upon for environmental health and safety. Whether it be a worker handling hazardous materials, a medical facility with vulnerable patients, a public school using Aeroex filters to mitigate airborne contaminants, or a manufacturer with strict specifications (e.g. aerospace), Aeroex is committed to the trust its clients place in our made-in-Canada purification systems. If you want a trusted supplier of fan filters that understands the science and specifications of clean rooms, contact Aeroex to get started today

Air Purification

Fume Extraction with Activated Carbon

Treating Fumes with Granulated Activated Carbon

Granulated activated carbon is commonly used as a filter media to remove harmful fumes, odors, and gaseous compounds to improve indoor air quality. 

Humans have been using carbon filtration for thousands of years. Ancient Egyptians were the first documented to have used carbon medicinally – to remove odors as the result of infection. Before this, it was used in the manufacture of bronze to remove impurities. Gas masks manufactured in WWI used charcoal filters to remove some of the deadly gases used in combat. 

Today, a primary usage for granulated activated carbon is in work environments where limiting exposure to toxic fumes can prove difficult. Effectively treating and removing fumes can mitigate the negative outcomes that are the result of long-term exposure – thereby protecting the health of a facility’s personnel and staff. 

Activated carbon is an effective filter media for removing harmful fumes and gases due to its ability to remove volatile organic compounds (VOCs) and other pollutants from the air. Activated carbon achieves this through the process of adsorption in which pollutants are trapped outside the pore structure of the activated carbon granules. 

In today’s post, we discuss in-depth everything you need to know about treating fumes with granulated activated carbon – including what it is, how it works, and what options are available to you based on your needs.

What is Granulated Activated Carbon?

Carbon (also known as charcoal) refers to what is left behind after incomplete combustion. Industrial processes of manufacturing activated carbon occur in a 2-step process. First, material from wood, coconut shells, or coal is carbonized in a vacuum until all organic compounds are volatilized – leaving behind the carbon. 

Next, high-temperature steam, air, or carbon dioxide is applied to “activate” the carbon. This makes the carbon more porous and vastly increases its surface area – allowing an increased number of places for which gas molecules can be trapped.

How does granulated activated carbon work?

Granulated activated carbon effectively filters harmful pollutants from the air via adsorption. 

This process is different from the similarly named absorption. The key distinction between adsorption and absorption is that in the process of adsorption – pollutants adhere to the outside of the carbon. This is in contrast to absorption, where pollutants are absorbed within the structure of the substance much like that of a sponge.

Activation of the carbon expands its surface area which is what enables more pollutants to adhere to the outside of the carbon in the process of adsorption. 

Why do we use granulated activated carbon to treat fumes?

Granulated activated carbon has proven to be effective at removing odors, impurities, and harmful gases historically so it would make sense (and there’s science to prove it) that it would make for an effective filter media to treat against harmful fumes and gases.

The vast surface area of activated carbon makes it a more effective filter media than other substances as the larger surface area creates more surface tension, thereby promoting adsorption of harmful gases to its surface. 

Granulated activated carbon filters are effective where other filters are not at removing harmful fumes and VOCs from the air. They will typically feature a bed of activated carbon to trap gases and harmful fumes to improve indoor air quality. 

There are some gaseous substances that some mechanical filters are ineffective at trapping. Mechanical filters are unable to remove unpleasant odors – so it is often the case that carbon filters are used in tandem with mechanical filters that remove fine particles from the air, to improve indoor air quality overall. 

Activated Carbon Filters in Commercial Places

In manufacturing facilities, regular exposure to harmful fumes can be difficult to mitigate. Depending on the types of substances being used in different manufacturing processes, exposure to fumes can negatively impact the health of facility staff and personnel. As such, a powerful and effective filtration solution needs to be in place to improve indoor air quality. 

This is where the use of carbon filters can come into play. While many facilities may already have existing and effective dust or mist collection systems in place, the mechanical filters used in these systems are unable to properly filter out harmful gases and fumes. 

Granulated Activated Carbon Solution for Your Unique Needs 

There’s no question that minimizing exposure to harmful fumes is paramount to ensuring the health and safety of your shop personnel. It is for this reason that Canadian-based Aeroex Technologies has engineered a solution capable of effectively removing harmful fumes to improve the indoor air quality of your work environment. 

The Aeroex team of professionals will assess your facility’s unique needs to offer a tailor-made solution for fume treatment in your indoor work environment. Models in our IRIS series of medical-grade air filtration systems are equipped with a dual-stage, high-performance odour control MERV8/carbon primary filter as well as a second-stage HEPA filter to effectively mitigate the impact of exposure to harmful fumes via ambient or source-capture filtration. 

We are also able to augment your facility’s existing ventilation systems you have in place with an air purification solution to improve indoor air quality. This can supplement any existing ventilation systems you have currently in place at the source but are looking to improve air quality across your facility.

To provide you with a quality solution, we recommend allowing Aeroex to assess your facility to offer an affordable and efficient air purification system that meets your facility’s unique needs. Having over 2 decades’ worth of experience, our team of professionals is here to ensure that your facility’s air purification system works effectively to remove fumes and promote improved air quality. To get started, contact Aeroex today.

Blog Mist Collectors

Mist Collection for Swiss Lathe Machining

Swiss lathe style machining, named in reference to a Swiss watchmaker who invented the technique in the 1800s, is a unique machining technique gaining in popularity that presents some significant challenges for oil mist and smoke releases. 

In this article, we discuss the unique aspects of the Swiss lathe style method in the machining industry, the challenges of oil mist and indoor air quality that it often creates, and methods for addressing these issues to keep your shop running at full capacity and top condition. 

What is Swiss Lathe Style Machining?

Swiss lathe style machining is unique for its use of a slider to move parts along the longitudinal or “z” axis towards the guide brushing using a moving headstock for mounting. This approach ensures the part is fully stabilized yet capable of any rotation when brought into contact with the guide bushing. 

This is different from conventional turning because of the mobile headstock (rather than fixed), the ability to rotate during cycles, and the ability to mount long and thin parts in the collet or “chuck” of the headstock. A fixed chuck feeds the part towards the tool, allowing for a variety of machining treatments to be applied along a single path, such as the intervals needed to produce threading. Improvements in the precision of programming make it an attractive choice for parts like medical equipment or military equipment where very low tolerance for variability is accepted.

Do Swiss Lathes Generate Heat and Oil Mist?

The customizable nature of Swiss lathe machining and the ability to deliver multiple cuts in the same cycle using rotations means that this technique commonly leads to heat issues with your parts and equipment. With so much cutting happening in a short period, it’s easy to see how it could get too hot. 

Swiss lathes commonly generate a lot of high due to the high spindle speeds used to achieve high precisions, and there are a variety of applications being made in quick succession within a cycle due to the rotational abilities and mobile headstock. 

Many of the advanced capabilities of a Swiss lathe that make it an attractive option for high precision parts also produce heat in the machine matrix, commonly treated with oil coolants. These coolants can produce sprays, mists, and vapours when deflected from the parts – these liquids remain in the air of the machine enclosure until cleared out. The emphasis of this technique on small, high-precision parts means that the enclosure is often smaller than other equipment, meaning that high oil mist and smoke that is generated accumulates and leaves faster than in more general CNC machines. 

While enclosure size alone is not an issue, unfortunately, a lot of oil mist is generated due to the high spindle speed of a Swiss lathe intended to ensure high tooling precision. This spindle speed volatilizes the oil mist particles that would otherwise be mechanically displaced, leading to smaller vaporized oil mist particles. These oil mist particles are difficult to filter and are the root cause of your air quality issues.

What Coolants Do Swiss Lathe Machines Use?

The overview above demonstrated that Swiss lathe machines generate a significant amount of heat due to their precision techniques and that this is generally mitigated by an oil lubricant. The type of oils used for Swiss lathe machining requires further consideration due to their unique aspects. Swiss lathes will use thick oil lubricants designed to reduce the heat and friction generations by precision machining. Thick coolants have less emulsified water, resulting in splashes and sprays off the machine tools that are more concentrated. These thick oils quickly become sticky when heated and can create issues for your filters and equipment if not removed. 

How to Remove Oil Mist From Swiss Lathe Machines?

Removing oil mist from the Swiss lathe enclosure requires an oil mist collector that can safely and efficiently filter out the sprays, mists, and vapors produced from the oil lubricants and the machining process. Conventional ventilation or filtration systems are not equipped to safely remove dangerous oil mists, meaning a specialized solution is needed that has sufficient air handling to prevent a buildup in the small enclosure while still delivering superior filtration. Aeroex has designed oil mist collector solutions that are highly customizable and built on the underlying science of the heat management challenges in machine techniques like Swiss lathes. 

For machine applications like Swiss lathes where oil mist and smoke need to be quickly removed from the enclosure due to its size, Aeroex typically recommends the use of models like the Mist-Fit 550 or the ARO Series 600. All Aeroex oil mist collectors work to virtually eliminate mist, smoke, and fine particles, making them ideal for oil mist applications. Aeroex oil mist collectors use multi-stage separation technology to progressively remove oil mist with increasing filtration media. The primary and secondary stages eliminate up to 95% of oil mist through mechanical element filtration and mesh designed to promote the coalescing of mist particles. Aeroex products then use a depth loading fiber bed with a MERV 15 rating – unlike products that require frequent filter changes, the volume of filter media provided ensures that it lasts up to 3 years, thereby reducing your maintenance. 

Custom Solutions for Swiss Lathe Style Machines

Aeroex solutions are customizable to the Swiss lathing application in question. Models like the Mist-Fit can be equipped with a fourth-stage HEPA filter to deal with very fine mists if needed, without compromising on filtration capacity. In cases like Swiss machining where heavy oils are being used, Aeroex may recommend a Pre-Filter Box – this is to capture heavier material early, which usually extends the life of your equipment significantly. In each of these cases, the solution we recommend will depend on factors like the type of oil you’re using. Ultimately, Aeroex understands that air needs to be moved quickly before sprays can stick to your equipment, but filtering too aggressively without primary stages could cause clogging in the filter. 

Aeroex provides the right custom solution of progressive stages with optimal efficiency needs for oil mist collection in swiss lathe style machining. We aim to deliver the best value with made-in-Canada equipment that has a long life and saves you money in the long run, while delivering the superior performance you expect. Contact Aeroex today to learn more.

Posts navigation